Effectief datamanagement

Datamanagement legt het fundament voor onderzoek, waarbij gestructureerd beheer van data zorgt voor transparantie, efficiënt hergebruik, en naleving van onderzoeksorganisatievoorwaarden en ethische richtlijnen.

Fundament van Onderzoek data

  • Je zorgt voor een solide basis voor onderzoek door gestructureerd beheer van onderzoeksdata.
  • Je biedt transparantie en traceerbaarheid van verzamelde gegevens, waardoor de betrouwbaarheid van het onderzoek wordt versterkt.

Efficiënt (Her)Gebruik van data

  • Je faciliteert efficiënt hergebruik van data voor toekomstige analyses of vervolgonderzoek.
  • Je minimaliseert verlies van waardevolle informatie door gestructureerde opslag en documentatie.

Voldoen aan Voorwaarden van onderzoeksorganisaties

  • Je voldoet aan de eisen en normen van onderzoeksorganisaties en subsidieverstrekkers, wat de geloofwaardigheid van het onderzoek bevordert.
  • Je vergemakkelijkt het naleven van ethische richtlijnen, wetgeving en gedragscodes met betrekking tot gegevensbeheer.

Onderzoek wijst uit dat publicaties waarbij de achterliggende data in welke vorm dan ook (via appendices, URL’s of contactinformatie) beschikbaar zijn gesteld, gemiddeld meer geciteerd worden dan publicaties waarbij de achterliggende data niet beschikbaar zijn gesteld.

Inhoud

Een datamanagementplan is dynamisch. In de beginfase van je onderzoek is het niet altijd mogelijk om alle details in te vullen, pas het aan bij belangrijke veranderingen in je onderzoek die datamanagement beïnvloeden. Update het plan minstens jaarlijks, bewaar oude versies, en documenteer vanaf wanneer welk plan geldt. Het datamanagementplan maakt onderdeel uit van de onderzoeksprojectdocumenten, sla deze documenten op in Research Drive zodat elk projectlid toegang heeft tot de laatste versie van het datamanagementplan.

Globaal bestaat het datamanagementplan uit de onderstaande acht onderdelen, de online HHs training research datamanagement biedt uitgebreider uitleg per onderdeel. 

Projectgegevens

Generieke informatie over je onderzoek zoals het doel en de gegevens van de onderzoekers(s), samenwerkingspartners en subsidieverstrekkers.

Data verzamelen

Datakarakteristieken als datatypes, dataformaten en de verwachte grootte van de data en de methoden en technieken die je gaat toepassen bij het verzamelen en organiseren van je data zoals mappenstructuur, naamgeving, standaarden en normen, en versiebeheer.

Documentatie en metadata

Welke data over je data en begeleidende documentatie zijn nodig om anderen te helpen om je data te begrijpen en te (her)gebruiken, denk daarbij aan gebruik van een metadatastandaard en een README.txt-bestand.

Ethische en juridische aspecten

Je aanpak bij kwesties die om extra zorgvuldigheid vragen waaronder databescherming, privacy, auteursrechten en intellectuele eigendomsrechten.
Voor meer informatie bekijk de pagina’s Wetenschappelijke integriteit en de Ethische Commissie en wetgeving.

Opslag en back-up

Geef antwoord op vragen rondom het opslaan, delen met andere onderzoekers en back-uppen van je data tijdens het onderzoeksproces, denk daarbij aan de opslagruimte voor zowel het bewaren als het back-uppen van de data, de frequentie van het back-uppen en een (herstel)plan bij dataverlies of een datalek. Een veilige dataopslag bij de Haagse is Research Drive.

Selectie databehoud

Beschrijf en verantwoord je beslissing over of je wel of niet je data (of een deel daarvan) zal bewaren voor de lange termijn en of er legale redenen zijn om (een deel van) de data direct na afronden van je onderzoek te vernietigen.

Data delen

Beschrijf je beoogde doelpubliek voor de data die je gaat behouden en op welke wijze je de data vindbaar maakt voor je doelpubliek, de datarepository die je daarvoor gaat inzetten, de condities waaronder je doelpubliek de data mag raadplegen en wanneer de data beschikbaar zullen zijn. Neem daarbij minimale eisen in acht die wellicht ook zijn opgelegd door je subsidieverstrekker: gebruik van persistent identifier, openbare beschikbaarheid van informatie, toegangsprotocollen, data-licenties en waarborgen voor duurzame beschikbaarheid.

Verantwoordelijkheden en middelen

Geef aan wie verantwoordelijk is voor het datamanagementplan en de activiteiten die je in de vorige onderdelen hebt beschreven en welke financiële en andere middelen zoals specialistische kennis en hardware of software je nodig hebt om deze activiteiten te realiseren. 

Templates

Voor het opstellen van een datamanagementplan zijn verschillende templates beschikbaar. Wellicht hanteert de subsiedieverstrekker van je onderzoek een eigen template.

De template van de Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) kun je onder aan deze pagina downloaden. Het NWO template wordt ook gebruikt voor interne HHs onderzoeksprojecten zonder subsidie. 

Templates van overige subsidieverstrekkers zijn te vinden in de onderstaande tools en templates.

  • DMPonline: online tool voor het schrijven, bewerken, delen en bewaren van een datamanagementplan waarvan het gebruik ook door een aantal financiers wordt voorgeschreven of aangeraden (kies bij het aanmaken van een account voor je subsidieverstrekker als organisatie, indien je voor je onderzoek geen gebruikmaakt van een subsidieverstrekker kies dan voor ‘DMPonline – Tutorials’ als organisatie). 
  • ERC Data Management Plan Template: template van de Europese Onderzoeksraad.

Kosten

Goed datamanagement brengt kosten met zich mee, in uren en in geld. In dit overzicht zijn de mogelijke kosten per activiteit van het onderzoeksproces zichtbaar gemaakt. Het overzicht is gebaseerd op de UK Data Service Data management costing tool and checklist.

FAIR data

Uiteindelijk gaat het bij de inspanningen die je verricht op het gebied van datamanagement om het verifieerbaar maken van je onderzoeksresultaten en om de onderliggende data herbruikbaar te maken. Hiervoor moeten de data FAIR zijn: Findable, Accessible, Interoperable, Reusable. Met andere woorden je data moeten vindbaar, toegankelijk, uitwisselbaar, herbruikbaar en duurzaam opgeslagen zijn.

Datamanagementparagraaf

Bij het indienen van een subsidieaanvraag kan de subsidieverstrekker verzoeken om in de aanvraag al een aantal zaken rond datamanagement te benoemen. Dit wordt de datamanagementparagraaf genoemd. We hebben de vragen die in een datamanagementparagraaf aan bod kunnen komen op een rijtje gezet met een advies hoe deze te beantwoorden.

Hulp

Als onderzoeker ben je zelf verantwoordelijk voor goed datamanagement. Maar kom je er even niet uit? Of heeft je datamanagementparagraaf of -plan een check nodig? Dan staat er binnen De Haagse Hogeschool een data steward met een team voor je klaar bestaande uit medewerkers van verschillende afdelingen, ieder met zijn/haar eigen specialisme: Team Onderzoek, Subsidiedesk, IT, Functionaris Gegevensbescherming en Bibliotheek. Stel je vraag via researchsupport@hhs.nl

Bij datamanagement hoort veilige dataopslag, bij de Haagse wordt gebruik gemaakt van Research Drive.